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1. INTRODUCTION

This Final Scientific Report summarizes the research efforts
carried out by the Gas Dynamics Laboratory of the Mechanical and Aerospace
Engineering Department, Princeton University, under Contract F49620-80- C-
0092 of the UI. S. Air Force Office of Scientific Research, during the 1980-
81 contract period. This research has dealt with the problems of compres-
sible flow and shock wave/boundary layer interactions in two and three
dimensions and at flight-scale Reynolds numbers. The aim of this research

is to provide some fundamental physical understanding of these complex flows*1 by way of detailed measurements and analyses.
Several individual studies have proceeded during this contract. The

primary emphasis of the research has been in exploring the important but
little-known range of three-dimensional (3-D) interactions at high speeds.

Building on previous work under AFOSR sponsorship, a series of parametric
experiments and a detailed analysis have led to the synthesis of scaling
laws for Reynolds number effects on these interactions.

Further experiments continued the adaptation and use of hot-wire
anemometry in high-Reynolds number supersonic flows. Hot-wire surveys were
made in the previously-explored flowfield of a reattaching free shear layer,
and in the interaction generated by a two-dimensional (2-D) compression cor-

ner of 801 deflection angle at Mach 3.

Other research activities under the subject contract have included
the development of new flow visualization methods for high-speed 3-D flows,

the completion and initial calibration of a computerized 3-D yaw probe, and

the preparation of previous AFOSR-sponsored experimental results for inclu-
sion in the Data Library of the 1980-81 AFOSR-HTTM-Stanford Conference on

Complex Turbulent Flows. Since detailed reports of this research program
have appeared or will appear in technical Journals and publications (see

Bibliography and References), the present treatment is kept appropriately

brief.



-2-

2. SHOCK/BOUNDARY LAYER INTERACTION SCALING
IN TWO AND THREE DIMENSIONS

Shock wave interactions with compressible turbulent boundary layers

have been studied many times by past investigators. Most of these studies

have concerned the two-dimensional or semi-infinite case because the past

investigators felt that the problem was already sufficiently complex with-

out the added difficulty of a third dimension. They proceeded to attempt

to characterize these 2-D interactions through experimental measurements

and some approximate calculations.

The earliest investigators (e~g., Refs. I and 2) learned that the

streamwise length scales of these interactions depended upon Mach number,

Reynolds number, overall pressure rise, incoming boundary layer thickness,

and (sometimes) experimental geometry. Through the years, as a body of

experimental evidence was built up, empirical corr-elations and approximate

analyses have evolved into what we now know as the scaling laws of 2-D

shock/boundary layer interactions, which describe - with mixed accuracy -

the effects of the above parameters on interaction length scales (Ref. 3).

-I However, even with the simplifying assumption of 2-D flow, some of

these scaling laws have not been developed sufficiently to provide a general

picture of the interaction scaling. For example, it often has been assumed

(eg. Refs. 2 and 4) that the length scale of a 2-D interaction is propor-

tional to the incoming turbulent boundary layer thickness, 60 , if all other

parameters are held constant. Limited experimental data supported this view

for many years. Only recently have more detailed studies (Refs. 3, 5 and 6)

shown that this is an oversimplification, and that the Reynolds number is

also an important part of .he interaction scale.

* Figure 1 (from Ref. 6) illustrates the Reynolds number and boundary

layer thickness scaling of upstream influence ahead of 2-D Mach 3 compres-

sion corners as we now understand it. Stated simply, if 6 0 is taken as the

interaction scale, then a Re60 "residual" effect remains to be taken into

account. This has been done in Figure 1, where good agreement among the
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three leading experiments in the field is shown in terms of an empirical

6and Re60 scaling function.

Still, the scaling of 2-D interactions is not yet perfectly understood.

The physical mechanism of upstream influence, for example, has been the sub-

ject of a long-term effort by many distinguished researchers, and is still

not clear. Recent developments in the so-called "triple-deck" theory (Ref.

7) may point the way to an eventual understanding of this mechanism.

While some questions remain about the generality and physical basis

-If the 2-D interaction scaling laws, there is nevertheless a reasonable

scaling framework with which to proceed. The situation for 3-D interactions,

unfortunately, is not nearly so clear. Far fewer 3-D experiments have been

done, and each one has seemed to stand by itself with little obvious connec-

tion to the others. While the individual 3-D experiments have shown some

radical departures from the known 2-D behavior, it has not been possible to

judge from them how large a particular 3-D interaction scale should be, or

how it might vary with 6 0 Re, M., shock strength, etc. Basic knowledge has

been lacking, both in terms of a sufficient range of experimental measure-

ments and a framework within which to relate them.

This problem has been studied in recent years by Settles, Dolling,

Oskam, Bogdonoff, and other investigators at the Princeton University Gas

Dynamics Laboratory (Refs. 6, 8-11). These efforts have been concentrated

on a particular class of simple 3-D geometries which produce representative

(though not necessarily simple) 3-D interactions. This class of geometries,

illustrated in Figure 2, includes those which we call the "sharp fin," "swept

fin,'' 'blunt fin,' and 'swept compression corner."

During the past year a concentrated effort was made to obtain data

on the upstream influence scales of the swept compression corner and sharp

fin interactions. These data were deliberately taken over wide ranges of

incoming turbulent boundary layer thickness and unit Reynolds number. The

resulting data sets were analyzed in hopes of finding some common principle

to relate the scaling of both interactions.
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After a considerable effort (in which it was first necessary to

re-examine the 2-D Re and 6o scaling), this goal was accomplished. Its

detailed development is given in Refs. 6 and 11. Briefly, the streamwise

scaling of upstream influence is the same as in 2-D flow, but an analogous

spanwise scaling function is required for 3-D interactions, which, unlike

2-D cases, develop and change in both streamwise and spanwise directions.

The general scaling law, applicable to 2-D and 3-D shock/boundary

layer interactions, is given by:

Lm Re-a zR - a

6 a+ I  fn (z Re X, M....
Sa+ 

C

where Lm = upstream influence distance

Re = freestream Reynolds number, = freestream velocity/kinematic
viscosity

S = local incoming equilibrium turbulent boundary layer thickness

a = a constant (-1/3 for M = 3 and high Reynolds numbers)

aX = two angles which specify the 3-D shock strength and sweepback

z = spanwise coordinate, and

M = freestream Mach number

A complete discussion and physical interpretation of this scaling law is

given in Ref. 6. Its empirical justification is shown in Figs. 3 and 4,

where both sharp fin and swept compression corner interactions are scaled,

in terms of Re and 6 effects, by the scaling law as given above.

Figures 3 and 4 represent physical pictures of the interaction

development in both the streamwise and spanwise directions, in terms non-

dimensional in Re and S. The shape of the "footprint" of the interaction

is fixed by a given choice of a, x, and M, but the dimensional scale can

be compressed or expanded by changes in Re and S. For a test model or a

control surface of fixed dimensions, one can "see farther out" along the

non-dimensional spanwi - develr nt of the interaction if Re is increased
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or 6 is decreased, or both. This has important implicctions for the test

conditions required to fully explore 3-D interactions in wind tunnels of

limited size.

No scaling functions are presented here for the effects of a, X, and

M. These are elements of the 3-D interaction behavior which are not yet

Vi understood, and which are the subject of ongoing research.

1

I.J
I
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3. TURBULENT MEASUREMENTS VIA HOT-WIRE ANEMOMETER

Hot-wire anemometry techniques for high-speed high-Reynolds number

flows have been developed at the Gas Dynamics Laboratory under previous

AFOSR sponsorship, and were first applied to the study of a reattaching

free shear layer (Ref. 12). These preliminary measurements were repeated

during the current contract year.

There were several reasons for repeating the measurements. These

included establishing thevalidity of the measurement technique, exploring

the causes of possible errors in the technique which might lead to improve-

ments therein, and establishing a more firm data base on the fluctuating

*properties of high-speed reattachment. Specifically, the repeatability of

the hot-wire measurements was checked in terms of the effects of using

different probes and varying both the physical spacing of the measurement

points and the number of high-frequency records taken at each point.

Figure 5 illustrates the excellent repeatability that can be obtained

when several surveys are made with the same hot-wire probe. It also demon-

strates that reasonable changes in vertical step size have a negligible

effect on the final result, and that 25,600 readings (25 records at 1024

readings each) are sufficient to obtain convergence in terms of fluctuation

intensity.

However, some deterioration in repeatability (not illustrated here)

was observed when different hot-wire probes were used. Modifications in

the wire calibration routine are being implemented to alleviate this problem.

In a separate hot-wire investigation carried out during the contract

period, detailed surveys were made in the flowfield generated by a 2-D, 80

compression corner at M ,, 3. The mean-flow measurements of this flow, pre-

viously carried out by Settles, et.al. (Ref. 13), reveal a weak shock/boundary

layer interaction with no flow separation. The only other turbulence mea-

surements available for compression corners seem to be those by Ardonceau,

et.al. (Ref. 14).



-7-

The configuration investigated is sketched in Figure 6. The in-

coming two-dimensional turbulent boundary 1iyer develops without pressure

gradient and has an overall thickness, 6 0, of approximately 26mm. The

freestream conditions are: Mach number = 2.85 and unit Reynolds number =

7.3 x 107/m, and the wall conditions are near adiabatic. The 8' compression

corner model was installed on the tunnel floor.

The mean wall static pressure distribution for this model is shown

in Figure 7. In this and the following figures, x = 0.0 corresponds to

the corner position, and the negative and the positive x values denote up-

stream and downstream distances from the corner, respectively.

The main data obtained in this study are represented in Figures 8-10.

The r.m.s. value of the mass-flow fluctuation <pu'>, was normalized by the

local mean mass flow, puL, and the mean freestream mass flow upstream of the

shock wave, puE. The location of the shock wave, measured from a schlieren

photograph, is indicated by the arrows in the figures. It can be seen from

Figures 8(a) and (b) that the level of the mass flow fluctuation increases

significantly after the shock wave. The maximum value of <pu'>/puE is plotted

in Figure 9 as a function of streamwise distance. This clearly shows a rapid

rise in the maximum fluctuation level after the corner. This is followed by

a gradual rise up to the most downstream station, approximately 6 60 downstream

of the corner. It should be noted that the wake-strength parameter, W, (ob-

tained from the mean velocity profiles) begins to decrease almost immediately

after the corner (Ref. 13), indicating that, in contrast to the turbulence

behavior, the mean flow quantities do appear to relax toward their equili-

brium values.

The profiles of <pu'>/puE are plotted against y1 in Figure 10. This

figure clearly shows how the fluctuation level is amplified throuoh the

severe adverse pressure gradient. The region where the amplification occurs

! is confined to the portion of the boundary layer downstream of the shock

wave, and the rest of the boundary layer remains relatively undisturbed.

These results will be discussed in more detail in an upcoming tech-

nical paper (Ref. 15).



4. TECHNIQUE, INSTRUMENTATION, AND FACILITY DEVELOPMENT

Techniques and instrumentation are always important considerations

in experiments aimed at such a complex phenomenon as a shock/boundary layer

interaction. The Gas Dynamics Laboratory maintains a constant effort to

develop new techniques and instrumentation while at the same time investi-

gating fluid flows. During the contract period, progress has been made in

three such development efforts: 3-D flow visualization, yaw measurements

in 3-D flows via "cobra" probe, and the extension of our testing capability

to another Mach number.

Flow visualization in high-speed, 3-D, turbulent boundary layer flows

is a triply complicated problem. Of the massive body of literature available

on flow visualization (see, for example, Ref. 16), very little is found to

apply to such conditions. Yet it is well known that such visualization is

necessary in order to gain a physical understanding of the flow, and to

guide more quantitative measurements using other instruments.

Preliminary tests were begun in order to develop new techniques or

modify previous techniques of flow visualization for high-speed, 3-D turbu-

lent flows. The results of a modest effort were quite encouraging, in that

five relatively simple methods were found to be useful: kerosene-lampblack

surface streak traces, localized vapor visualization, conical shadowgraphy,

stereoscopic schlieren photography, and incandescent particle tracers.

I, The most useful of these techniques is the localized vapor visualiza-

tion, the possibility of which does not appear to have been identified in

the previous literature. This new technique was applied to 3-D flows

generated by swept compression corners, as sketched in Figure 11. Briefly,

a volatile fluid such as acetone is introduced into the flow through pres-

sure taps or other orifices. The fluid vaporizes and generates a locally

dense fog which can be illuminated stroboscopically and photographed stereo-

scopically to record 3-D information. A typical pair of stereo photos in

Figure 12 demonstrates that the turbulent boundary layer detaches from the

surface ahead of a swept corner defined by a 240 and X= 40' at Mach 3.
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Another quite useful flow visualization technique is conical shadow-
graphy, which is done by generating a conical light beam at the apex of an
approximately conical 3-D shock/boundary layer interaction. A sketch of the

experimental arrangement and a typical conical shadowgram from the swept
corner experiment series are reproduced here in Figure 13.

A complete description of the five flow visualization techniques
developed in this preliminary study is given in Ref. 17. Work along these

lines is still continuing at the Gas Dynamics Laboratory.

Another technique which progressed during the contract period was

that of the computer-driven yaw probe for surveying 3-D flowfields. This
instrument, under development in the Gas Dynamics Laboratory for several
years, is designed to null itself automatically to the local flow direction

by means of a differential pressure signal, a controlling computer program,
and a stepping-motor driver (see schematic, Fig. 14).

During the contract period, this new instrument was tested in a 3-D
shock/boundary layer interaction to determine whether or not it functioned

correcly. The results were excellent, both in terms of the proper conver-
gence of the nulling process and the speed and accuracy of computerized

control, which are well beyond what can be done by manual nulling. Pending

a few remaining tests, the automated yaw probe is ready for use in inves-

tigating 3-D interactions.

Finally, efforts were under way during the contract period to extend
the testing capability of the Princeton High Reynolds Number Blowdown Wind

Tunnel. Our previous studies of 3-D shock/boundary layer interactions have

pointed toward the need for experiments at more than one Mach number in

order to evaluate properly the ,caling laws governing such interactions

(see Section 2).

It was decided to design a new nozzle for the blowdown facility at
a lower Mach number than M 1%, 3, where most current tests have been performed.

Analyses of probable changes in wave angles and pressure distributions led
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us to choose M " 2 for this purpose. A method-of-characteristics nozzle

design computer program was run for our conditions by Dr. R. L. P. Voisinet

of The Naval Surface Weapons Center, White Oak, MD. The detailed design

and construction of the-dnw nozzle will be carried out during the 1981-82

contract year.

* i



* 5. OTHER RESEARCH ACTIVITIES

Participation in the 1980-81 AFOSR-HTTM-Stanford Conference on

Complex Turbulent Flows was included in our research activities during
the contract period. This participation involved preparing data sets

for inclusion in the Data Library generated by the Conference (see Report
Bibliography), and attending and participating in the first of two meetings

* of the Conference, held at Stanford University during September 1980.

Data from two previous AFOSR-sponsored experimental programs carried
out at the Gas Dynamics Laboratory were included in the Stanford Data Library.

These programs involved 2-D compression corner interactions (Ref. 13) and the
reattachment of a turbulent free shear layer at high speeds (Ref. 12). These
data serve as test cases for the testing and guidance of computational fluid
dynamics methods. A great deal of care was taken, both in the original

experiments and in their documentation, to provide competent and consistent
data sets for this purpose. These fully-documented experiments and some

fifty others by different investigators make up the complete Data Library
of the Stanford Conference, which is available on computer tape from COSMIC,

112 Barrow Hall, Univ. of Georgia, Athens, GA 30602.
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Fig. 4. Example of Streamwise and Spanwise Upstream Influence Scaling
for Sharp Fin Interactions.



- Fi 9. 5. Hot-Wi re Surveys of Incoming Turbulent-27 Boundary Layer for Reattachment Experiment.
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ACETONE INJECTION TUBE PRESSURE TAPS

M=--2.93 '

TUNNEL FLOOR REATTACHMENT LINE

SEPARATION LINE

Fig. 11. Sketch of Swept Compression Corner Geometry.

Fig. 12. Stereo Pair Showing Acetone Injection
Upstream of Separation Zone ( = 40°).



Fig. 13. a) Sketch of Conical Shadowgraph Arrangement
for Swept Compression Corners.

- b) Conical Shadowgram ( = 400).
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Fig. 14. Schematic of Computer-Driven Yaw Probe.


